Table of Contents

Preface

1 Introduction
1.1 Introduction to Relative Motion
1.2 The Galilean Transformations of Classical Physics
1.3 The Invariance of the Mechanical Laws of Physics under a Galilean Transformation
1.4 Electromagnetism and the Ether
1.5 The Michelson-Morley Experiment

Summary of Basic Concepts
Summary of Important Equations
Questions and Problems for Chapter 1

Interactive Tutorials

2 Special Relativity
2.1 The Postulates of the Special Theory of Relativity
2.2 The Lorentz Transformation
2.3 The Lorentz-Fitzgerald contraction
2.4 Time Dilation
2.5 Transformation of Velocities
2.6 The Law of Conservation of Momentum and Relativistic Mass
2.7 The Law of Conservation of Mass-Energy

Summary of Basic Concepts
Summary of Important Equations
Questions and Problems for Chapter 2

Interactive Tutorials

3 Spacetime
3.1 Spacetime Diagrams
 (a) An event in spacetime
 (b) Particle at rest
 (c) Rod at rest
 (d) Particle moving at constant velocity
 (e) Accelerated particle
 (f) Particle executing SHM
 (g) Particle moving in orbit
3.2 Consequences of Spacetime
 (a) Future, past, present, and the light cone
3.3 The Invariant Interval
3.4 The Invariant Interval on a Spacetime Diagram
3.5 Length Contraction on a Spacetime Diagram
3.6 Time Dilation on a Spacetime Diagram

Interactive Tutorials

4 Contravariance, Covariance and Spacetime Diagrams
4.1 The Components of a Vector in Skewed Coordinates
 (a) Rectangular Components of a Vector in an Orthogonal Coordinate System.
 (b) Contravariant components of a vector.
 (c) Covariant components of a vector.
4.2 Different Forms of The Spacetime Diagrams
4.3 Reciprocal Systems of Vectors
4.4 The Invariant Interval in a Spacetime Diagram
4.5 Example of The Use of Covariant and Contravariant Vectors
 (a) Work done using Contravariant Vectors
 (b) Work done using Covariant Vectors
 (c) Work done using a mixture of Contravariant and Covariant Vectors

Summary of Basic Concepts
Summary of Important Equations
Questions and Problems for Chapter 4

Interactive Tutorials

5 The Loedel Spacetime Diagram
5.1 The Loedel Spacetime Diagram - Contravariant components
5.2 The Lorentz Transformation by a Loedel Diagram
5.3 The Inverse Lorentz Transformation by a Loedel Diagram
5.4 Length Contraction by a Loedel Diagram
5.5 Time Dilation by a Loedel Diagram
5.6 Simultaneity by a Loedel Diagram

Summary of Basic Concepts
Summary of Important Equations
Questions and Problems for Chapter 5

Interactive Tutorials

6 The Brehme Spacetime Diagram
6.1 The Brehme Spacetime Diagram - Covariant components
Table of Contents

6.2 The Lorentz Transformation by a Brehme Diagram
6.3 The Inverse Lorentz Transformation by a Brehme Diagram
6.4 Length Contraction by a Brehme Diagram
6.5 Time Dilation by a Brehme Diagram
6.6 Simultaneity by a Brehme Diagram
6.7 The Invariant Interval in a Spacetime Diagram
Summary of Basic Concepts
Summary of Important Equations
Questions and Problems for Chapter 6

7 Acceleration and Gravity

7.1 The Principle of Equivalence
7.2 The Gravitational Red Shift
7.3 The Gravitational Red Shift by the Theory of Quanta
7.4 An Accelerated Clock and the Lorentz Transformation Equations
Summary of Basic Concepts
Summary of Important Equations
Questions and Problems for Chapter 7
Interactive Tutorials

8 Accelerating Reference Frames and The Curvature of Spacetime

8.1 Flat and Curved Spacetime
8.2 The Concept of Curvature
8.3 The Curvature of a Circle and an Ellipse
8.4 The Curvature in three dimensions
8.5 Intrinsic Curvature
8.6 Curvilinear Coordinates in Two Dimensions - The Differential Quadratic Form
 (a) Orthogonal Systems
 (b) A Skewed Coordinate System
 (c) Polar Coordinate System
 (d) Skewed Coordinates of Special Relativity
8.7 The Differential Quadratic Form for a Rotating Disk
Summary of Basic Concepts
Summary of Important Equations
Questions for Chapter 8

9 General Relativity

9.1 The General Theory of Relativity
9.2 Schwarzschild's Solution of Einstein's Theory of General Relativity
9.3 The Black Hole
9.4 The Kerr Black Hole
9.5 The Bending of Light in a Gravitational Field
9.6 The Advance of the Perihelion of the Planet Mercury
9.7 The Shapiro Experiment
Summary of Basic Concepts
Summary of Important Equations
Questions and Problems for Chapter 9

Appendix A Some Physical Constants
Appendix B Some Mathematical Formulas
Appendix C Table of Integrals
Bibliography